Once considered a barren plain with the odd hydrothermal vent, the seafloor appears to be teeming with microbial life.“A 60,000 kilometer seam of basalt is exposed along the mid-ocean ridge spreading system, representing potentially the largest surface area for microbes to colonize on Earth,” said USC geomicrobiologist Katrina Edwards.
The scientists found higher microbial diversity on the rocks compared with other vibrant systems, such as those found at hydrothermal vents. Even compared with the microbial diversity of farm soil—viewed by many as the richest—diversity on the basalt is statistically equivalent.
These findings raise the question of where these bacteria find their energy.
With evidence that the oceanic crust supports more bacteria compared with overlying water, the scientists hypothesized that reactions with the rocks themselves might offer fuel for life. Back in the lab, they calculated how much biomass could theoretically be supported by chemical reactions with the basalt. “It was completely consistent,” Edwards said.
This lends support to the idea that bacteria survive on energy from the crust, a process that could affect our knowledge about the deep-sea carbon cycle and even evolution.
For example, many scientists believe that shallow water, not deep water, cradled the planet’s first life. They reason that the dark carbon-poor depths appear to offer little energy, and rich environments like hydrothermal vents are relatively sparse.
But the newfound abundance of seafloor microbes makes it theoretically possible that early life thrived—and maybe even began—on the seafloor. “Some might even favor the deep ocean for the emergence of life since it was a bastion of stability compared with the surface, which was constantly being blasted by comets and other objects,” Edwards suggested. link
Abundance and diversity of microbial life in ocean crust. 2008. Cara M. Santelli, et al. Nature 453: 653-656.